Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

A cyclic tetramer of [Ag (1,4,7-trithiacyclononane) $]^{+}$, cyclo-tetrakis $(\mu-1,4,7-$ trithiacyclononane- $\kappa^{3} S^{1}, S^{4}, S^{7}: \kappa S^{1}$)tetrasilver(I) tetrakis(trifluoromethanesulfonate) nitromethane disolvate

Tadashi Yamaguchi,* Fumie Yamazaki and Tasuku Ito

Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
Correspondence e-mail: yamaguchi@agnus.chem.tohoku.ac.jp

Received 2 November 2001
Accepted 21 January 2002
Online 12 March 2002
(1,4,7-Trithiacyclononane)silver trifluoromethanesulfonate crystallizes in a tetrameric form from nitromethane, to give the title compound, $\left[\mathrm{Ag}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~S}_{3}\right)_{4}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{4} \cdot 2 \mathrm{CH}_{3} \mathrm{NO}_{2}$. The complex cation consists of four $[\mathrm{Ag} L]^{+}$units (L is $1,4,7-$ trithiacyclononane), with four $\mathrm{Ag}-\mathrm{S}-\mathrm{Ag}$ bridges forming a cyclic tetramer. The almost planar $\mathrm{Ag}_{4} \mathrm{~S}_{4}$ ring takes an octagonal form.

Comment

Recently, molecular squares and related cyclic oligomers of metal complexes constructed by self-assembly have attracted much attention in supramolecular chemistry (Fujita \& Ogura, 1996; Leininger et al., 2000). Thia-macrocyclic ligands have a tendency to form oligomeric complexes with metal ions such as Ag^{+}(Blower et al., 1989; Blake et al., 2000). A cyclic trimer of $[\mathrm{Ag} L]^{+}$(L is $1,4,7$-trithiacyclononane) was reported to be present in a crystal obtained from a reaction between AgClO_{4} and L in methanol, i.e. $\left[\mathrm{Ag}_{3} L_{3}\right]\left[\mathrm{Ag} L_{2}\right]\left(\mathrm{ClO}_{4}\right)_{4}$ (Küppers et al., 1987). The ${ }^{1} \mathrm{H}$ NMR spectrum of this complex indicates a rapid ligand-exchange equilibrium in solution, and the possibility of another type of oligomer was considered. In this paper, we report the tetrameric structure of $[\mathrm{Ag} L]^{+}$observed in $[\mathrm{Ag} L]_{4}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{4} \cdot 2 \mathrm{CH}_{3} \mathrm{NO}_{2}$, (I). By changing the counteranion, solvent and metal-ligand ratio, it is possible to form the tetramer rather than the previously reported trimer.

The complex cation in (I) consists of four $[\mathrm{Ag} L]^{+}$units (Fig. 1), with the macrocyclic ligand L coordinating to Ag^{+}. One of the three S atoms in each $[\operatorname{Ag} L]^{+}$unit acts as a bridging ligand to another $[\operatorname{Ag} L]^{+}$unit, forming an approximately octagonal skeletal structure comprised of four Ag^{+}and four S atoms. All the angles at the corners of the $\mathrm{Ag}_{4} \mathrm{~S}_{4}$ octagon are close to 135°. There is a crystallographic inversion centre at
the centre of the complex cation, and therefore two nonequivalent $[\operatorname{Ag} L]^{+}$units exist.

The $\mathrm{Ag}_{4} \mathrm{~S}_{4}$ ring is almost flat, with a maximum deviation from the mean plane of $0.11 \AA$ for atom S1. It is interesting to compare (I) with the cyclic trimer, which also has a planar $\mathrm{Ag}_{3} \mathrm{~S}_{3}$ ring, with a corner angle of $c a 120^{\circ}$.

Each Ag^{+}ion in the tetramer has a distorted tetrahedral geometry, with one short $\left[\mathrm{Ag} 1-\mathrm{S} 4^{\mathrm{i}} 2.460\right.$ (2) \AA and $\mathrm{Ag} 2-\mathrm{S} 1$ 2.443 (2) \AA; symmetry code: (i) $-x,-y, 1-z]$ and three long [2.560 (2)-2.660 (2) A] Ag-S distances, with the shortest distance involving the bridging S atoms. These $\mathrm{Ag}-\mathrm{S}$ distances are slightly longer than normal, but similar silver complexes with L have comparable $\mathrm{Ag}-\mathrm{S}$ distances (2.582.70 Á; Küppers et al., 1987; Blower et al., 1989). The shortest $\mathrm{Ag}-\mathrm{S}$ bond in each unit is tilted slightly, away from a pseudothreefold axis based on the macrocyclic ligand, and three S -$\mathrm{Ag}-\mathrm{S}$ (adjacent) angles, which involve the unique $\mathrm{Ag}-\mathrm{S}$ bond, are not equal and are classified as one small [119.15 (6) and $\left.123.01(6)^{\circ}\right]$ and two large angles $\left[131.98(6)-134.47(6)^{\circ}\right]$. A similar distortion has been observed in tetrahedral $[\mathrm{Ag} L]$ moieties in the trimer (Küppers et al., 1987) and in $[\mathrm{Ag} L \mathrm{Cl}]$ (Blower et al., 1989), and the distortion in (I) is small relative to that in other complexes.

Figure 1
A view of the molecular structure of the tetrameric complex cation in (I), showing the atom-numbering scheme and 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

One of the two large $\mathrm{S}-\mathrm{Ag}-\mathrm{S}$ (adjacent) angles in each unit is involved in the $\mathrm{Ag}_{4} \mathrm{~S}_{4}$ octagon, whereas in the trimer, the unique small $\mathrm{S}-\mathrm{Ag}-\mathrm{S}$ (adjacent) angle is involved in the $\mathrm{Ag}_{3} \mathrm{~S}_{3}$ ring. Concomitantly, the $\mathrm{Ag}-\mathrm{S}-\mathrm{Ag}$ angles in (I) are larger [134.02 (7) and $139.36(7)^{\circ}$] than that in the trimer [126.0 (1) ${ }^{\circ}$].

Experimental

$[\mathrm{Ag} L]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ was synthesized according to the published method of Blower et al. (1989). A crystal of (I) was obtained by slow evaporation of a nitromethane solution of $[\mathrm{Ag} L]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$.

Crystal data

$\left[\mathrm{Ag}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~S}_{3}\right)_{4}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{4}--$
$2 \mathrm{CH}_{3} \mathrm{NO}_{2}{ }^{-}$
$M_{r}=1871.17$
Monoclinic, $P 2_{1} / a$
$a=14.877(4) \AA$
$b=14.775(3) \AA$
$c=15.581(4) \AA$
$\beta=15.80(2) \AA$
$V=3083(1) \AA^{\circ}$
$Z=2$

$$
\begin{aligned}
& D_{x}=2.015 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 24 \\
& \quad \text { reflections } \\
& \theta=11.0-12.4^{\circ} \\
& \mu=1.88 \mathrm{~mm}^{-1} \\
& T=296.2 \mathrm{~K} \\
& \text { Prismatic, colourless } \\
& 0.15 \times 0.15 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

Rigaku AFC-7S diffractometer $\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.753, T_{\text {max }}=0.828$
5904 measured reflections
5433 independent reflections

$$
\begin{aligned}
& 3810 \text { reflections with } F^{2}>2 \sigma\left(F^{2}\right) \\
& R_{\text {int }}=0.021 \\
& \theta_{\max }=25^{\circ} \\
& h=-17 \rightarrow 0 \\
& k=0 \rightarrow 17 \\
& l=-16 \rightarrow 18
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Ag} 1-\mathrm{S} 1$	$2.596(2)$	$\mathrm{Ag} 2-\mathrm{S} 1$	$2.443(2)$
$\mathrm{Ag} 1-\mathrm{S} 2$	$2.660(2)$	$\mathrm{Ag} 2-\mathrm{S} 4$	$2.645(2)$
$\mathrm{Ag} 1-\mathrm{S} 3$	$2.571(2)$	$\mathrm{Ag} 2-\mathrm{S} 5$	$2.560(2)$
$\mathrm{Ag} 1-\mathrm{S} 4^{\mathrm{i}}$	$2.460(2)$	$\mathrm{Ag} 2-\mathrm{S} 6$	$2.577(2)$
			$131.98(6)$
$\mathrm{S} 1-\mathrm{Ag} 1-\mathrm{S} 2$	$82.71(5)$	$\mathrm{S} 1-\mathrm{Ag} 2-\mathrm{S} 5$	$123.01(6)$
$\mathrm{S} 1-\mathrm{Ag} 1-\mathrm{S} 3$	$84.21(5)$	$\mathrm{S} 1-\mathrm{Ag} 2-\mathrm{S} 6$	$83.76(6)$
$\mathrm{S} 1-\mathrm{Ag} 1-\mathrm{S} 4^{\mathrm{i}}$	$133.82(5)$	$\mathrm{S} 4-\mathrm{Ag} 2-\mathrm{S} 5$	$83.47(5)$
$\mathrm{S} 2-\mathrm{Ag} 1-\mathrm{S} 3$	$83.96(5)$	$\mathrm{S} 4-\mathrm{Ag} 2-\mathrm{S} 6$	$85.60(6)$
$\mathrm{S} 2-\mathrm{Ag} 1-\mathrm{S} 4^{\mathrm{i}}$	$119.15(6)$	$\mathrm{S} 5-\mathrm{Ag} 2-\mathrm{S} 6$	$134.02(7)$
$\mathrm{S} 3-\mathrm{Ag} 1-\mathrm{S} 4^{\mathrm{i}}$	$134.47(6)$	$\mathrm{Ag} 1-\mathrm{S} 1-\mathrm{Ag} 2$	$139.36(7)$
$\mathrm{S} 1-\mathrm{Ag} 2-\mathrm{S} 4$	$132.32(5)$	$\mathrm{Ag} 1^{\mathrm{i}}-\mathrm{S} 4-\mathrm{Ag} 2$	

Symmetry code: (i) $-x,-y, 1-z$.

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \text { H-atom parameters constrained } \\
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+\left\{0 . 0 5 9 \left[\max \left(F_{o}^{2}, 0\right)\right.\right.\right. \\
& \left.\left.\left.\quad+2 F_{c}^{2}\right] / 3\right\}^{2}\right] \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=1.15 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.53 \mathrm{e}^{-3} \AA^{-3}
\end{aligned}
$$

H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the bonded C atom.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Rigaku, 1999); program(s) used to solve structure: DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: TEXSAN; software used to prepare material for publication: TEXSAN.

This work was supported by Grants-in-Aid for Scientific Research (No. 12640531 and Priority Areas 'Metal-assembled Complexes' No. 10149102) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OA1126). Services for accessing these data are described at the back of the journal.

References

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., García-Granda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Blake, A. J., Champness, N. R., Howdle, S. M. \& Webb, P. B. (2000). Inorg. Chem. 39, 1035-1038.
Blower, P. J., Clarkson, J. A., Rawle, S. C., Hartman, J. R., Wolf, R. E. Jr, Yagbasan, R., Bott, S. G. \& Cooper, S. R. (1989). Inorg. Chem. 28, 40404046.

Fujita, M. \& Ogura, G. (1996). Bull. Chem. Soc. Jpn, 69, 1471-1482.
Küppers, H.-J., Wieghardt, K., Tsay, Y.-H., Kruger, K., Nuber, B. \& Weiss, J. (1987). Angew. Chem. Int. Ed. Engl. 26, 575-576.

Leininger, S., Olenyuk, B. \& Stang, P. J. (2000). Chem. Rev. 100, 853-907.
Molecular Structure Corporation (1994). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Rigaku (1999). TEXSAN. Version 1.10. Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.

