Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

A cyclic tetramer of [Ag(1,4,7-trithia $cyclononane)]^+$, *cyclo*-tetrakis(μ -1,4,7trithiacyclononane- $\kappa^3 S^1$, S^4 , S^7 : κS^1)tetrasilver(I) tetrakis(trifluoromethanesulfonate) nitromethane disolvate

Tadashi Yamaguchi,* Fumie Yamazaki and Tasuku Ito

Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan Correspondence e-mail: yamaguchi@agnus.chem.tohoku.ac.jp

Received 2 November 2001 Accepted 21 January 2002 Online 12 March 2002

(1,4,7-Trithiacyclononane)silver trifluoromethanesulfonate crystallizes in a tetrameric form from nitromethane, to give the title compound, $[Ag_4(C_6H_{12}S_3)_4](CF_3SO_3)_4$ ·2CH₃NO₂. The complex cation consists of four $[AgL]^+$ units (*L* is 1,4,7-trithiacyclononane), with four Ag-S-Ag bridges forming a cyclic tetramer. The almost planar Ag₄S₄ ring takes an octagonal form.

Comment

Recently, molecular squares and related cyclic oligomers of metal complexes constructed by self-assembly have attracted much attention in supramolecular chemistry (Fujita & Ogura, 1996; Leininger et al., 2000). Thia-macrocyclic ligands have a tendency to form oligomeric complexes with metal ions such as Ag⁺ (Blower et al., 1989; Blake et al., 2000). A cyclic trimer of $[AgL]^+$ (L is 1,4,7-trithiacyclononane) was reported to be present in a crystal obtained from a reaction between AgClO₄ and L in methanol, *i.e.* $[Ag_3L_3][AgL_2](ClO_4)_4$ (Küppers *et al.*, 1987). The ¹H NMR spectrum of this complex indicates a rapid ligand-exchange equilibrium in solution, and the possibility of another type of oligomer was considered. In this paper, we report the tetrameric structure of [AgL]⁺ observed in $[AgL]_4(CF_3SO_3)_4$ ·2CH₃NO₂, (I). By changing the counteranion, solvent and metal-ligand ratio, it is possible to form the tetramer rather than the previously reported trimer.

The complex cation in (I) consists of four $[AgL]^+$ units (Fig. 1), with the macrocyclic ligand *L* coordinating to Ag⁺. One of the three S atoms in each $[AgL]^+$ unit acts as a bridging ligand to another $[AgL]^+$ unit, forming an approximately octagonal skeletal structure comprised of four Ag⁺ and four S atoms. All the angles at the corners of the Ag₄S₄ octagon are close to 135°. There is a crystallographic inversion centre at

the centre of the complex cation, and therefore two nonequivalent $[AgL]^+$ units exist.

The Ag₄S₄ ring is almost flat, with a maximum deviation from the mean plane of 0.11 Å for atom S1. It is interesting to compare (I) with the cyclic trimer, which also has a planar Ag₃S₃ ring, with a corner angle of *ca* 120°.

Each Ag⁺ ion in the tetramer has a distorted tetrahedral geometry, with one short [Ag1-S4ⁱ 2.460 (2) Å and Ag2-S1 2.443 (2) Å; symmetry code: (i) -x, -y, 1 - z] and three long [2.560 (2)-2.660 (2) Å] Ag-S distances, with the shortest distance involving the bridging S atoms. These Ag-S distances are slightly longer than normal, but similar silver complexes with L have comparable Ag-S distances (2.58– 2.70 Å; Küppers et al., 1987; Blower et al., 1989). The shortest Ag-S bond in each unit is tilted slightly, away from a pseudothreefold axis based on the macrocyclic ligand, and three S-Ag-S(adjacent) angles, which involve the unique Ag-S bond, are not equal and are classified as one small [119.15 (6) and 123.01 (6)°] and two large angles [131.98 (6)-134.47 (6)°]. A similar distortion has been observed in tetrahedral [AgL] moieties in the trimer (Küppers et al., 1987) and in [AgLCl] (Blower et al., 1989), and the distortion in (I) is small relative to that in other complexes.

A view of the molecular structure of the tetrameric complex cation in (I), showing the atom-numbering scheme and 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

One of the two large S-Ag-S(adjacent) angles in each unit is involved in the Ag_4S_4 octagon, whereas in the trimer, the unique small S-Ag-S(adjacent) angle is involved in the Ag_3S_3 ring. Concomitantly, the Ag-S-Ag angles in (I) are larger [134.02 (7) and 139.36 (7)°] than that in the trimer [126.0 (1)°].

Experimental

 $[AgL](CF_3SO_3)$ was synthesized according to the published method of Blower *et al.* (1989). A crystal of (I) was obtained by slow evaporation of a nitromethane solution of $[AgL](CF_3SO_3)$.

Crystal data

$[Ag_4(C_6H_{12}S_3)_4](CF_3SO_3)_4$ -	$D_x = 2.015 \text{ Mg m}^{-3}$
2CH ₃ NO ₂	Mo $K\alpha$ radiation
$M_r = 1871.17$	Cell parameters from 24
Monoclinic, $P2_1/a$	reflections
a = 14.877 (4) Å	$\theta = 11.0 - 12.4^{\circ}$
b = 14.775 (3) Å	$\mu = 1.88 \text{ mm}^{-1}$
c = 15.581 (4) Å	T = 296.2 K
$\beta = 115.80 \ (2)^{\circ}$	Prismatic, colourless
$V = 3083 (1) \text{ Å}^3$	$0.15 \times 0.15 \times 0.10 \text{ mm}$
<i>Z</i> = 2	
Data collection	
Rigaku AFC-7S diffractometer	3810 reflections with $F^2 > 2\sigma(F^2)$

Rigaku AFC-7S diffractometer	3810 reflections with $F^2 > 2\sigma$
$\omega/2\theta$ scans	$R_{\rm int} = 0.021$
Absorption correction: ψ scan	$\theta_{\rm max} = 25^{\circ}$
(North et al., 1968)	$h = -17 \rightarrow 0$
$T_{\min} = 0.753, \ T_{\max} = 0.828$	$k = 0 \rightarrow 17$
5904 measured reflections	$l = -16 \rightarrow 18$
5433 independent reflections	

Table 1

Selected geometric parameters (Å, °).

Ag1-S1	2.596 (2)	Ag2-S1	2.443 (2)
Ag1-S2	2.660 (2)	Ag2-S4	2.645 (2)
Ag1-S3	2.571 (2)	Ag2-S5	2.560 (2)
Ag1-S4 ⁱ	2.460 (2)	Ag2-S6	2.577 (2)
S1 - 4 g1 - S2	82 71 (5)	$81 - 4 \sigma^2 - 85$	131.98 (6)
S1 - Ag1 - S2 S1 - Ag1 - S3	84 21 (5)	S1 - Ag2 - S6	123.01 (6)
S1-Ag1-S4 ⁱ	133.82 (5)	S4-Ag2-S5	83.76 (6)
S2-Ag1-S3	83.96 (5)	S4-Ag2-S6	83.47 (5)
S2-Ag1-S4 ⁱ	119.15 (6)	S5-Ag2-S6	85.60 (6)
S3-Ag1-S4 ⁱ	134.47 (6)	Ag1-S1-Ag2	134.02 (7)
S1-Ag2-S4	132.32 (5)	Ag1 ⁱ -S4-Ag2	139.36 (7)

Symmetry code: (i) -x, -y, 1 - z.

Refinement

Refinement on F^2 R(F) = 0.047 $WP(F^2) = 0.133$	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + \{0.059[\max(F_o^2, 0) + 2F^2]/(2)^2]$
S = 1.18 5433 reflections	$(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 1.15 \text{ e} \text{ Å}^{-3}$
361 parameters	$\Delta \rho_{\rm min} = -0.53 \ {\rm e} \ {\rm \AA}^{-3}$

H atoms were placed in calculated positions, with C–H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}$ of the bonded C atom.

Data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1994); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *TEXSAN* (Rigaku, 1999); program(s) used to solve structure: *DIRDIF92* (Beurskens *et al.*, 1992); program(s) used to refine structure: *TEXSAN*; software used to prepare material for publication: *TEXSAN*.

This work was supported by Grants-in-Aid for Scientific Research (No. 12640531 and Priority Areas 'Metal-assembled Complexes' No. 10149102) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OA1126). Services for accessing these data are described at the back of the journal.

References

- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., García-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). *The DIRDIF Program System*. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Blake, A. J., Champness, N. R., Howdle, S. M. & Webb, P. B. (2000). *Inorg. Chem.* 39, 1035–1038.
- Blower, P. J., Clarkson, J. A., Rawle, S. C., Hartman, J. R., Wolf, R. E. Jr, Yagbasan, R., Bott, S. G. & Cooper, S. R. (1989). *Inorg. Chem.* 28, 4040– 4046.
- Fujita, M. & Ogura, G. (1996). Bull. Chem. Soc. Jpn, 69, 1471-1482.
- Küppers, H.-J., Wieghardt, K., Tsay, Y.-H., Kruger, K., Nuber, B. & Weiss, J. (1987). Angew. Chem. Int. Ed. Engl. 26, 575–576.
- Leininger, S., Olenyuk, B. & Stang, P. J. (2000). Chem. Rev. 100, 853-907.
- Molecular Structure Corporation (1994). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Rigaku (1999). TEXSAN. Version 1.10. Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.